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Abstract

This note describes how to implement and solve a quadratic programming optimization problem using a
shallow neural network in Keras. A single linear layer is used with a custom one-sided loss to impose the
inequality constraints. A custom kernel regularizer is used to impose the optimization objective, yielding
a form of penalty method. This provides a useful exercise in augmenting the loss, metrics, and callbacks
used in Keras. This also potentially allows the exploitation of the back-end implementations of Keras and
Tensorflow on GPU’s and distributed storage. We demonstrate the method for large-scale computational
image reconstruction with compressed sensing simulations.

Introduction

A general quadratic program (QP) is commonly written in the form [1]:

min
w

1

2
wTPw + qTw (1)

Gw ≤ h

Aw = b

where P, G, and A are matrices, and q, h, b and w are vectors; we used the letter w for the free variable
to be optimized over, for consistency with the artificial neuron notation we will use. By replacing the equality
constraint Aw = b with inequality constraints Aw ≤ b and Aw ≥ b (the latter can be written equivalently as
−Aw ≤ −b), we can augment the G and h definitions appropriately to use the simpler description,

min
w

1

2
wTPw + qTw (2)

Gw ≤ h

A penalty method solves this problem by replacing it with problems of the form

min
w

1

2
wTPw + qTw + φ(Gw − h) (3)

The so-called auxiliary function φ is designed to produce a large value when the constraint is violated [1], as
in

φ(Gw − h) =

{
large, gT

i w − hi > 0 for any i

0, gT
i w − hi ≤ 0 for all i

(4)

where gT
i is the ith row of G and hi is the ith element of h. Minimization of this term forces the solution

toward fulfilling the constraints.

Meanwhile, an artificial neuron implements the function

y = f(x;w) = σ(wTx + b), (5)
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where σ is the activation function; w is the (to be learned) weight vector; b is the (to be learned) bias. x
refers to an input sample and y is the prediction or target for that sample. The learning (also called training)
in frameworks such as Keras1[2] is performed by some variant of stochastic gradient descent applied to a loss

function L(f(x;w), ytrue) for a set of data {(x(1), y
(1)
true), (x

(2), y
(2)
true), ..., (x

(K), y
(K)
true)}. Our goal, therefore is to

formulate the optimization problem of Eq. (3) using this framework. In other words, we wish to learn weights
which solve the quadratic program.

It is possible to impose constraints on the weights in Keras2, including non-negativity and norms constraints.
Hence some simple optimization problem can be directly implemented with a linear layer (i.e. no activation
function). In this note we show how to perform a full implementation of the general form of the problem of Eq.
(3), both for its instructive value in extending Keras methods, as well as for potential use in implementing large
optimization problems on such frameworks.

Methods

In order to adapt Keras to a general quadratic programming problem, we will employ the follow process:

1. Pass rows gT
i of G in as input samples x(i), and corresponding elements hi of h as targets y(i).

2. Create a network consisting of a single node with no bias or activation, to compute the product gT
i w .

3. Use a custom one-sided loss function to penalize violations of the QP inequalities gT
i w ≤ hi.

4. Use a custom weight regularization function R(w) = 1
2w

TPw + qTw to impose the QP objective.

5. Successively decrease a scalar weight on R(w) to achieve a (relatively) increasing penalty on constraint
violations.

In this approach, the constraint matrix G may be arbitrarily large, as it is only used a row (or small batch of
rows) at a time; it never need be stored in its entirety in local memory . The objective matrix P, on the other
hand, must be stored in memory for use.

Constraints via Loss

First we provide a function to create a custom one-sided loss. In our case, we want to implement a penalty
function which only penalizes outputs which violate the constraint. There are many possible options for this, used
as penalty and barrier methods in optimization research. Here we will use a one-sided penalty as follows:

L(f(x), y) =

{(
f(x;w)− y

)2
, f(x;w) > y

0, f(x;w) ≤ y
(6)

Creating custom losses can be tricky in Keras; the function must operate over Keras tensors, utilizing a limited
set of available operators. For example the multiplication operator (as of this writing) cannot directly mul-
tiply a float32 number by a float16 number, requiring explicit casting. If using Keras with Tensorflow (e.g.,
using the Keras included with tensorflow), custom functions are created using functions linked in the backend
library3.

A python implementation of this loss function is:

def one_sided_l2(y_tar, y_pred):
diff = y_pred - y_tar
mdiff = diff>0 # mask of positive diff, satisfies constraint
mdiff32 = keras.backend.cast(mdiff,’float32’) # need float32 for product below
return keras.backend.mean(keras.backend.square(mdiff32*diff), axis=-1)

1https://keras.io/
2https://keras.io/constraints/
3https://www.tensorflow.org/api_docs/python/tf/keras/backend
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Next we will demonstrate the use of our one-sided loss to find a feasible solution, i.e. in the set of possible
solutions which fulfill the constraints,

S = {w : Gw ≤ h}. (7)

In the following code we create a simple model using a single-node network to find a feasible solution, i.e., a
member of the set S,

import tensorflow as tf
from tensorflow import keras

G = numpy.asarray([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]]).T
h = numpy.asarray([0.0,0.0,-15.0,100.0,80.0]).T

model = keras.Sequential()
model.add(keras.layers.Dense(1, input_dim=2, use_bias=False))
sgd = keras.optimizers.SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd,loss=one_sided_l2,metrics=[’mse’])
history = model.fit(G, h, epochs=5)

This code implements the function f(x;w) = wTx with the single layer. It operates by computing the loss on a
batch-wise basis, computing the loss for batch of rows of the constraints at a time, as in

∑
i∈batch L(wTgi, hi).

This loss is minimized using gradient with respect to the weights w for each batch.

As shown in Fig. 1, the model converges to a feasible point quickly. To get the solution, extract the weights
from the model as in the code w = model.get_weights().

Figure 1: Optimization problem #1 (feasibility problem): (left) Loss function versus epoch; (right) Gw versus
h, demonstrating fulfilled constraints Gw ≤ h.

Objectives via Regularization

Next we will formulate the QP objective with weight regularization Weight regularization is implemented by
adding a term to the loss, as in

LR(f(x;w), y) = L(f(x;w), y) + λR(w), (8)

The parameter λ is a non-negative hyperparameter we must choose to trade off the relative importance of the
two terms. We will return to this later.

In the present version of Keras, the term “regularizers” refer to regularization imposed on the values in individual
layers4. The weight regularization option in particular is called “kernel regularizer”. Other regularizer options
are “bias regularizer” (imposed on bias values), and “activity regularizer” (imposed on layer outputs). Built-in

4https://keras.io/regularizers/
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options for kernel regularization are `1 (to impose sparsity of w), `2 (also known as weight decay), and `1-
`2 (elastic net). For example, R(w) = ‖w‖22 in Eq. (8) for the `2 option. These simple regularizers, when
used along with our one-sided norm, can directly provide a norm objectives, such as the following optimization
problem,

min
w
‖w‖ (9)

Gw ≤ h

By minimizing the loss of Eq. (8), we enforce the inequality constraint by minimizing the first term, and
minimize the objective by minimizing the second term. A variety of interesting problems can be formulated
with these built-in regularizer options.

As with loss functions, regularizers can also be extended with custom functions. To impose the general quadratic
programming objective, 1

2x
TPx + qTx, we define the following function to use as kernel regularizer,

def xPx_qx(x):
xPx = keras.backend.transpose(x)@P@x
qx = keras.backend.transpose(keras.backend.cast(q,’float32’))@x
return lambda_reg*(0.5*xPx+qx)

Note that the “@” operator performs matrix multiplication, which in this tensor implementation appears to be
completely equivalent to matmul and dot. For example, even when using keras.backend.dot for a pair
of column vectors, we must transpose the first vector ourselves. We can impose this regularizer on the layer as
follows:

model.add(keras.layers.Dense(1, input_dim=1000, use_bias=False, kernel_regularizer=
xPx_qx))

Monitoring Optimization with Callbacks

In optimization, as in training machine learning models, it is important to monitor the performance during the
initial stages of application to a problem, to aid in choosing parameters and settings. In the implementation
given thus far, we will only see the intermediate loss function calculations, not the objective. In order to also
monitor the objective value during optimization, we must create a custom callback. A callback5 is a function
which the framework can be programmed to call at desired times, such as after every epoch in training The
following code saves the intermediate objective calculations for plotting,

def QP_metric(model):
w = model.layers[0].get_weights()[0]
return xPx_qx(w)

class ObjHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):

self.objective = []

def on_epoch_end(self, batch, logs={}):
self.objective.append(QP_metric(model).numpy()[0][0])

objhist = ObjHistory()

To print the objective value at each epoch, we include the following callback as well:

from tensorflow.keras.callbacks import LambdaCallback
print_obj = LambdaCallback(on_epoch_end=lambda batch, logs: print(QP_metric(model)))

The following example demonstrates the use of our custom regularizer and callbacks

P = numpy.asarray([[1.,2.],[0.,4.]])
q = numpy.asarray([[1.],[-1.]])
G = numpy.asarray([[-1.0, 0.0, -1.0, 2.0, 3.0],

5https://keras.io/callbacks/
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[ 0.0, -1.0, -3.0, 5.0, 4.0]]).T
h = numpy.asarray([0.0, 0.0, -15.0, 100.0, 80.0]).T

model = keras.Sequential()
model.add(keras.layers.Dense(1, input_dim=2, use_bias=False, kernel_regularizer=

xPx_qx))

sgd = keras.optimizers.SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)

lambda_reg=1e-6

model.compile(optimizer=sgd,
loss=one_sided_l2,
metrics=[’mse’])

model.fit(G.reshape(5,2), h.reshape(5,), epochs=1000, callbacks = [print_QP_metric,
objhist])

Figure 2: Optimization problem #1 (feasibility problem): (left) Loss function versus epoch; (right) Gw versus
h, demonstrating fulfilled constraints Gw ≤ h.

The results are given in Fig. 2, and compared to the result computed by CVXOPT [3] for this problem (see
Appendix A). In this case an optimal objective value of 44.85 was achieved by the Keras implementation, versus
an optimal of 49.07 achieved by CVXOPT. The different objective value is achieved by taking advantage of
slight constraint violations (too small to see in Fig. 2, which allow a lower objective value to be found. To more
strictly enforce the constraints we must increase the relative weighting of the penalty term, which we address
next.

Iteratively Increasing the Penalty

Finally we provide an example which iteratively increases the relative weight of the penalty term (enforcing the
inequality constraint), by reducing the scaling on the regularizer. In the following code lambda_reg is a global
variable used in the xPx_qx function to scale the regularization term. By reducing this variable at each pass
through the loop, we increase the relative importance of the penalty term.

model = keras.Sequential()
model.add(keras.layers.Dense(1, input_dim=1000, use_bias=False, kernel_regularizer=

xPx_qx))
model.summary()

lambda_reg = 1e-3

sgd = keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(optimizer=sgd,
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loss=one_sided_l2,
metrics=[’mse’])

Histo = {}
for k_outer in range(5):

model = keras.Sequential()
model.add(keras.layers.Dense(1, input_dim=1000, use_bias=False,

kernel_regularizer=xPx_qx))

lambda_reg = lambda_reg/10.

if k_outer>0:
model.set_weights(w)

model.compile(optimizer=sgd, loss=one_sided_l2, metrics=[’mse’])
Histo[k_outer] = model.fit(G, h, epochs=100, callbacks = [print_QP_metric,objhist

], batch_size=128, shuffle=True)
w = model.get_weights()

The results are shown in Fig. 3. The final objective value achieved was 479730, compared to 477156 achieved

Figure 3: Optimization problem #1 (feasibility problem): (left) Loss function versus epoch; (right) Gw versus
h, demonstrating fulfilled constraints Gw ≤ h.

by CVXOPT (Appendix B).

Computational Imaging Simulations

In this section we will implement a simulated computational imaging system with inequality-constrained data.
The data collection is assumed to be a compressed sensing technique which collects random combinations of
input points. The starting point for data collection is a sequence of values yi = gT

i x, where gi is a vector of
Normally-distributed random numbers, and x is a vector containing pixel values of the unknown image. The
true test image we will use is 150× 120 = 18000 pixels, given in Fig. 4,

Problem 1: Clamped signal

In the first example, we assume the that while the linear combinations yi may be positive or negative, we collect
ŷi which is thresholded to be nonnegative, as in

ŷi =

{
yi, if yi ≥ 0

0, if yi < 0
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Figure 4: True solution image x.

We reconstruct x using this collection via the following QP,

min
x
‖x‖ (10)

Gx ≤ ŷ

We randomly generate gi vectors and compute ŷi in an online fashion with the following generator

# problem 1: clamped outpu
blocksize = 64
cutoff = 0
def training_generator_1():

while 1:
P = numpy.random.randn(blocksize,N_pix)
dotprods = P@x_true
dotprods[dotprods<cutoff] = cutoff
X_train = P
y_train = dotprods # convert to less-than constraints
yield (X_train,y_train)

We used 30 epochs with 200 steps per epoch, effectively amounting to a dense matrix G of size 6000 × 18000.
The loss function and objectives are given in Fig. 5, and the reconstructed image is given in Fig. 6.

Figure 5: Loss and objective values during optimization for computational reconstruction problem 1.
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Figure 6: Reconstructed image after each multiple of 50 epochs.

Problem 2: Slack signal

Next we consider a case where we collect data ŷi = yi + si, where si is an unknown random “slack” signal that
is uniformly-distributed between zero and 100. The generator for this data is gives as follows

# problem 2: all-slack generator
blocksize = 64
slacksize = 100
def training_generator_2():

while 1:
P = numpy.random.randn(blocksize,N_pix)
dotprods = P@x_true
slack = slacksize*numpy.random.rand(blocksize,1)
X_train = P
y_train = dotprods + slack
yield (X_train,y_train)

The QP is of the same form as the previous problem, and the loss and objective are given in Fig. 7. The

0 50 100 150 200 250 300
epoch

101

102

103

104

Lo
ss

102

103

Ob
je

ct
iv

e

Figure 7: Loss and objective values during optimization for computational reconstruction problem 2.

reconstructed image is given in Fig. 8.

Discussion

We have demonstrated how a quadratic programming solver may be implemented by customizing a neural
network framework such as Keras. This suggests some interesting ideas for exploiting the hardware imple-
mentations on which such software packages are implemented. In the simple examples shown in this note, a
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Figure 8: Reconstructed image after each multiple of 50 epochs.

GPU implementation would be overkill. Even in a much larger-scale case, optimization time would likely be
dominated by data transfer, as the actual network complexity is minimal. However for many problems, the
constraint matrix may be implement in an online fashion directly on the GPU. An example might be a very
large image reconstruction application, where the forward model of the physical propagation of radiation is
simulated directly on the GPU. In this case only basic parameters, such as view direction and collected sensor
data, would need to be transferred to the GPU.

An open problem with both optimization solvers as well as machine learning platforms is the choice of opti-
mization parameters (i.e. hyperparameters and settings) which provide the fastest convergence. Parameters
such as learning rate and momentum can cause total optimization time to vary by orders of magnitude, making
the difference between a solvable and unsolvable problem when dealing with extremely large-scale problems.
A new perspective such as provided here, which relates these different fields, would hopefully lead to new
insights.

Appendix A: CVXOPT Example 1

import numpy
from cvxopt import matrix
from cvxopt import solvers

P = numpy.asarray([[1.,2.],[0.,4.]])
q = numpy.asarray([[1.],[-1.]])
G = numpy.asarray([[-1.0, 0.0, -1.0, 2.0, 3.0],
[ 0.0, -1.0, -3.0, 5.0, 4.0]]).T
h = numpy.asarray([0.0, 0.0, -15.0, 100.0, 80.0]).T

sol = solvers.qp(matrix(P, tc=’d’),
matrix(q, tc=’d’),
matrix(G, tc=’d’),
matrix(h, tc=’d’))

pcost dcost gap pres dres
0: 2.8110e+02 -2.6664e+02 5e+02 6e-17 1e+02
1: 2.4798e+02 1.4789e+02 1e+02 8e-17 2e+01
2: 4.8707e+01 -1.7918e+02 2e+02 1e-16 2e+01
3: 3.5331e+01 -5.7893e+01 9e+01 4e-16 4e+00
4: 3.5231e+01 3.3978e+01 1e+00 1e-17 4e-02
5: 3.5155e+01 3.5142e+01 1e-02 1e-16 4e-04
6: 3.5154e+01 3.5154e+01 1e-04 2e-16 4e-06
7: 3.5154e+01 3.5154e+01 1e-06 8e-17 4e-08
Optimal solution found.
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sol
{’x’: <2x1 matrix, tc=’d’>,
’y’: <0x1 matrix, tc=’d’>,
’s’: <5x1 matrix, tc=’d’>,
’z’: <5x1 matrix, tc=’d’>,
’status’: ’optimal’,
’gap’: 1.2617910893651018e-06,
’relative gap’: 3.58934020023423e-08,
’primal objective’: 35.15384622980947,
’dual objective’: 35.15384496801838,
’primal infeasibility’: 7.538017664871812e-17,
’dual infeasibility’: 4.2467004103447406e-08,
’primal slack’: 1.618890391498939e-08,
’dual slack’: 1.6445441148643891e-09,
’iterations’: 7}

Appendix B: CVXOPT Example 2

numpy.random.seed(0)
P = numpy.random.randn(1000,1000)
P = P@P.T # make positive semidefinite (Convex QP)
q = numpy.random.randn(1000,1)
x_true = numpy.random.randn(1000,1)
slack = numpy.random.randn(2000,1)
G = numpy.random.randn(2000,1000)
h = G@x_true + slack*(slack>0)

sol = solvers.qp(matrix(P, tc=’d’),
matrix(q, tc=’d’),
matrix(G, tc=’d’),
matrix(h, tc=’d’))

pcost dcost gap pres dres
0: 1.2774e+05 3.1594e+05 2e+06 1e+00 1e+03
1: 2.2203e+05 1.4833e+05 1e+06 4e-01 7e+02
2: 3.2562e+05 2.9089e+05 5e+05 2e-01 3e+02
3: 3.9010e+05 3.7999e+05 3e+05 8e-02 1e+02
4: 4.3268e+05 4.3003e+05 1e+05 4e-02 5e+01
5: 4.5734e+05 4.4796e+05 9e+04 2e-02 3e+01
6: 4.7088e+05 4.6377e+05 4e+04 7e-03 1e+01
7: 4.7615e+05 4.7193e+05 1e+04 2e-03 3e+00
8: 4.7736e+05 4.7509e+05 5e+03 6e-04 9e-01
9: 4.7754e+05 4.7652e+05 1e+03 7e-05 1e-01
10: 4.7730e+05 4.7694e+05 4e+02 2e-05 2e-02
11: 4.7718e+05 4.7713e+05 6e+01 2e-06 2e-03
12: 4.7716e+05 4.7715e+05 5e+00 1e-07 2e-04
13: 4.7716e+05 4.7716e+05 8e-02 2e-09 3e-06
14: 4.7716e+05 4.7716e+05 1e-03 2e-11 4e-08
Optimal solution found.

sol
{’x’: <1000x1 matrix, tc=’d’>,
’y’: <0x1 matrix, tc=’d’>,
’s’: <2000x1 matrix, tc=’d’>,
’z’: <2000x1 matrix, tc=’d’>,
’status’: ’optimal’,
’gap’: 0.0010098798005411858,
’relative gap’: 2.1164543557666675e-09,
’primal objective’: 477156.42897668254,
’dual objective’: 477156.42805600003,
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’primal infeasibility’: 2.196039044268912e-11,
’dual infeasibility’: 3.5348859757334116e-08,
’primal slack’: 9.306128382129809e-10,
’dual slack’: 2.7110081519145572e-08,
’iterations’: 14}
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